EDUCATIONAL GOALS AND EXPECTED LEARNING OUTCOMES

The course aims to provide students with the tools for understanding the static and dynamic behaviour of masonry and reinforced concrete existing buildings and for designing the strengthening of complex structures, even in seismic prone area.

The main skills gained will be:

Knowledge and understanding capacity: understanding of the static and dynamic behaviour of the structures, with particular reference to the masonry and reinforced concrete ones;

Capacity of applying knowledge and understanding: the student have to demonstrate their capacity in managing complex phenomena related to the particular type of the considered materials and structures and to be able of performing the assessment of existing buildings by using also complex designing tools;

Autonomy of judgment: The student must be able to independently evaluate the design optimal solutions according to the characteristics of the materials and structures considered and to the design objectives. He must also to know the main methodologies for assessing the safety for the analysed structures.

Communicative Skills: The student must show the ability to easily explain to non expert persons the operating principles of masonry and reinforced concrete structures and the main strengthening technologies, as well as the ability to submit an elaborate (project, thesis, Etc ...) by properly using the technical-scientific language.

Learning Skills: Depending on the information acquired during the frontal lessons, the student must be able to continuously and autonomously update their knowledge by consulting texts and technical / scientific publications of the disciplinary field of expertise in order to acquire the ability to follow in-depth Courses, Specialized Seminars and Masters.

PRE-REQUIREMENTS

The students must have passed the following exams: “Strength of Materials” and “Reinforced Concrete Structures”.

SYLLABUS

The course provides basic knowledge and specialized information on the techniques for the assessment of reinforced concrete and masonry existing structures, on the techniques for in situ tests on materials and on the methodologies for the strengthening design of existing buildings using classical and innovative approach.

In particular the main topics considered are:

- Reference standards: Existing Buildings, Assessment, Safety and verification criteria, Level of knowledge.
- Masonry Buildings: Behaviour of masonry structures under seismic action, Hierarchy of failure modes, Break-up of wall texture, collapse mechanisms of the wall outside of the plan, collapse mechanisms of the wall in the plane, horizontal structures and roofing, construction details, properties of materials, laboratory tests and in situ test, destructive testing, moderately destructive testing, non-destructive testing, assessment, classic and innovative upgrading techniques.
- Reinforced concrete Buildings: characteristics of the structure and structural details, definition of suitable investigation programs, material properties, non-destructive methods, processing of test results (Sonreb Method), investigations on steel reinforcements, structural assessment, seismic protection levels and safety factors, seismic action and load combination, methods of structural analysis and conditions of applicability.
TEACHING METHODS
The course is organized as following:
- Theoretical lessons;
- Tutorials in classroom and in laboratory;
- Technical visits.

EVALUATION METHODS
The main goal of the examination is to verify the learning level reached by the student with reference to the educational expected goals.

The exam is divided in two parts held on the same day.
- Discussion of a project work drawn up in the classroom during tutorials, regarding the design and verification of a multi-story or industrial building and its details. The test is passed with a score higher than 18/30;
- Oral examination aimed at evaluating the capacity of the student of connecting and comparing the different topics covered in the course. The test is passed with a score higher than 18/30;
- The final vote is provided by the average of the two previous partial votes.

TEXTBOOKS AND ON-LINE EDUCATIONAL MATERIAL
- Sisto Mastrodicasa, Dissesti Statici delle Strutture Edilizie, diagnosi e consolidamento, HOEPLI.
- Normative:
 - NTC 2018, Nuove norme tecniche per le costruzioni
 - Norme UNI e CNR per le prove in situ ed in laboratorio

Notes supplied are available on the course website: http://www.unibas.it/utenti/vona/didattica, facebook (https://www.facebook.com/groups/1292570284091811/) e classroom

INTERACTION WITH STUDENTS
During the first lesson the Professor, after describing the goals of the course, the program and the evaluation methods, provides to the students the website where they can find the on-line educational material and the recommended books. At the same time, he collects the list of the students, complete of all significant information (i.e. name, surname, email, badge number and so on..).
Office hours: Tuesday, 9:00-10:30, Wednesday, 9:00-10:30
In any case the professor is always contactable through the following email: marco.vona@unibas.it

EXAMINATION SESSIONS (FORECAST)
05/02/2020, 12/03/2020, 16/04/2020, 21/05/2020, 18/06/2020, 23/07/2020, 24/09/2020, 29/10/2020, 18/12/2020

SEMINARS BY EXTERNAL EXPERTS
YES

FURTHER INFORMATION

1 Subject to possible changes: check the web site of the Teacher or the Department/School for updates.