COURSE: Slope stability
ACADEMIC YEAR: 2019/2020
TYPE OF EDUCATIONAL ACTIVITY: Affine
TEACHER: Caterina Di Maio
e-mail: caterina.dimaio@unibas.it web: http://www2.unibas.it/dimaio/home.html
phone: +39 0971 205388 mobile (optional):
Language: Italian/English if foreign students will attend

| ECTS: (lessons and tutorials/practice) 9 | n. of hours: (lessons and tutorials/practice) 81 | Campus: Potenza Dept./School: School of Engineering Program: Master in Civil Engineering Semester: II |

EDUCATIONAL GOALS AND EXPECTED LEARNING OUTCOMES
The course focuses on the analysis of the mechanical behaviour of natural and artificial slopes, on the methods for the stabilization of landslides or for the reduction of landslide risk and displacements.

Knowledge and understanding: students have to prove themselves able to know and understand landslide typologies, triggering factors, methods for investigation and monitoring, methods for slope stability analysis and for the improvement of safety conditions, how to use advanced software for slope and landslide modelling.

Applying knowledge and understanding: students have to prove themselves able to plan site and laboratory investigations, interpret data, use advanced software critically, design remedial measures for landslide risk mitigation.

Making judgements: students have to be able to deepen what they learn, in order to use the acquired knowledge as a good basis to obtain further results, with ever-growing maturity and independent judgement.

Communication: students have to be able to communicate the acquired knowledge, also to non-expert people, by using the scientific language.

Lifelong learning skills: students have to be able to continuously update their knowledge by consulting books, documents and publications and by attending specific seminars.

PRE-REQUIREMENTS
A good knowledge of Soil Mechanics is required.

SYLLABUS
1. Advances in Soil and Rock Mechanics (14 hours)
2. Classification and kinematics of landslide phenomena, Landslide hazard and risk, Landslide investigation and monitoring of main parameters (pore water pressures, strains, displacements) (21 hours)
3. Analysis of the factors that influence the behaviour of slopes and landslides (rainfall, toe erosion, excavations, earthquakes) (14 hours)
4. Stability analysis methods (Limit equilibrium – Failure along planar surfaces: planar failure, wedge failure, infinite slope – Failure along curved surfaces: methods of slices). Slope stability analysis according to the new Italian Technical Code (10 hours)
5. Stress – strain analysis by finite element software (6 hours)
6. Stabilization measures: Modification of ground surface topography, Drainage, Retaining structures, Soil nailing and anchors, Mechanically Stabilized Earth (MSE), Improvement of soil mechanical properties (16 hours)
TEACHING METHODS
The course includes 81 hours consisting of: Theoretical lessons, Classroom tutorials, Project works, Technical visits, Seminars.

EVALUATION METHODS
Oral examination, Discussion of project works. During the exam the teachers will evaluate the student’s ability to make links and compare the different aspects dealt with in the course.

TEXTBOOKS AND ON-LINE EDUCATIONAL MATERIAL
Selected journal papers, guidelines, course handouts provided by the professor. On-line educational material is made available in a shared dropbox folder or at:
http://www2.unibas.it/dimaio/home.html

INTERACTION WITH STUDENTS
At the beginning of the course, after describing objectives, syllabus and evaluation methods, the teacher makes some educational material available to the students by a shared dropbox folder or by the websites mentioned above. At the same time, the list of the students is gathered with name, surname, matriculation number, and e-mail address.

Office hours:
Monday from 15 to 18, Macchia Romana Campus, Soil Mechanics Laboratory (Laboratorio di Geotecnica), room 4. Besides, the professor is always available for assisting the students by e-mail or by video-calling.

EXAMINATION SESSIONS (PLANNED)
11/01/19, 01/02/19, 01/03/19, 05/04/19, 03/05/19, 07/06/19, 05/07/19, 25/7/19, 06/09/19, 04/10/19, 8/11/19, 06/12/19

SEMINARS BY EXTERNAL EXPERTS
YES

FURTHER INFORMATION

1 Subject to possible changes: check the web site of the Teacher or the Department/School for updates.