COURSE: HYDRAULIC STRUCTURES II
ACADEMIC YEAR: 2019/2020
TYPE OF EDUCATIONAL ACTIVITY: Characterizing
TEACHER: Prof. GIUSEPPE OLIVETO

e-mail: giuseppe.oliveto@unibas.it
website: http://docenti.unibas.it/site/home/docente.html?m=001518

phone: +39 0971 205142
mobile (optional): –

Language: Italian/English

| ECTS: 9 | n. of hours: 81 [48 hours of lessons and 33 hours of tutorials] | Campus: Potenza
Dept./School: School of Engineering
Program: Master’s Degree in Civil Engineering | Semester: II

EDUCATIONAL GOALS AND EXPECTED LEARNING OUTCOMES
The overall objective of this course is to familiarize students with criteria, methods, and models for design of hydraulic structures and plants. The main knowledge areas cover theoretical, methodological and practical aspects of modelling of complex hydraulic systems like: (i) water pipe networks, (ii) stormwater and sewer pipe networks, (iii) river networks, (iv) hydraulic structures for water-flow storage and diversion, and (v) hydraulic works to control or mitigate river floods. At the end of the course and when the exam has been passed, the student shall be able to identify, independently (making judgements), and argue (communication skills), clearly and technically, the main parameters that control many complex hydraulic systems; s/he shall also be able to recognize suitable methods and models to design hydraulic structures and handle free public domain software extensively applied in hydraulic engineering (computing skills). The main abilities the student will acquire consist of planning, designing, and controlling the following hydraulic systems: (i) hydraulic systems for water-flow storage and distribution, (ii) stormwater and sewage systems, (iii) hydraulic systems to control or mitigate river floods, and (iv) hydraulic systems for water-flow storage and diversion.

PRE-REQUIREMENTS
Course prerequisites include: Fluid Mechanics and Hydraulic Structures I. Students should be familiar with fundamental aspects of: (i) static and kinematic of fluids; (ii) flows in open-channels and pressurized pipes; (iii) statistical analysis of precipitation and runoff data; and (iv) rainfall-runoff modelling.

SYLLABUS
Watershed and water resource budgets [4 hours of lessons + 2 hours of tutorials]: the hydrological cycle. Hydrologic engineering methods for water resources management [8 hours of lessons + 4 hours of tutorials]. Hydraulic structures for water-flow storage and diversion [4 hours of lessons + 2 hours of tutorials]: basic hydrologic and hydraulic concepts and methods on dams and water diversions. Water power plants [4 hours of lessons + 2 hours of tutorials]: planning and design criteria, hydraulic calculations, waterhammer analysis and control. Pumping plants [4 hours of lessons + 2 hours of tutorials]: planning and design criteria, types of water pumps, waterhammer analysis and control. River flood controls [3 hours of lessons + 3 hours of tutorials]: hydrologic and hydraulic fundamentals on flood lamination structures and strategies. Water distribution piping systems [10 hours of lessons + 8 hours of tutorials]: types of water piping systems, planning and design criteria, design features, hydraulic modeling and management, valves and devices. Examples with the free public domain software EPANET. Sewer systems [5 hours of lessons + 4 hours of tutorials]: types of sewer systems, planning and design criteria for combined, sanitary, and storm sewers, design features, hydrologic and hydraulic modelling and management, overflow devices. Earth-channel hydraulics [3 hours of lessons + 3 hours of tutorials]: sediment transport models, hydrologic and hydraulic modeling and management. Water-structures interaction [3 hours of lessons + 3 hours of tutorials]: bridge hydraulics, local and contraction scour at bridges. Examples with the free public domain software HEC-RAS.
TEACHING METHODS
The course is concerned with lectures and a suite of practical applications for a total of 81 hours. In particular, it consists of 48 hours of theoretical lessons and 33 hours of classroom tutorials.

EVALUATION METHODS
The evaluation method consists of an oral examination based on the topics covered in the course. The examination aims to evaluate the degree to which student learning outcomes meet the educational goals of the course with particular attention to the student’s skill in designing hydraulic structures in urban and fluvial environments. The exam procedure will allow assessing for each student: knowledge and understanding, applying knowledge and understanding, and learning skills. The oral examination will last approximately 1 hour. The maximum grade is 30, the lowest is 18 out of 30. Brilliant exams are graded as 30 “cum laude”.

TEXTBOOKS AND ON-LINE EDUCATIONAL MATERIAL
[The study of some of these texts would involve a deepening process of the English language (language skills)]

INTERACTION WITH STUDENTS
After describing educational goals, syllabus, teaching and evaluation methods, textbooks and on-line educational materials will be made available to the students at the beginning of the course. A students class list containing: student IDs, name, surname, and e-mail address will be set concurrently.
Professor’s office hours are as follows: Tuesday 3:00 P.M. – 5:00 P.M. and Friday 9:00 A.M. – 11:00 a.m. at Macchia Romana Campus – Engineering Building (on the 5th Floor, room #6). However, students can contact the professor via email at any hour of the day.

EXAMINATION SESSIONS (FORECAST)

SEMINARS BY EXTERNAL EXPERTS
YES × NO □

FURTHER INFORMATION

1 Subject to possible changes: check the web site of the Teacher or the Department/School for updates.