COURSE: **MATHEMATICAL ANALYSIS II**

ACADEMIC YEAR: 2019/2020

TYPE OF EDUCATIONAL ACTIVITY: BASIC

PROFESSOR: SORIN DRAGOMIR

e-mail: sorin.dragomir@unibas.it
web: docenti.unibas.it/site/home/docente.html?m=000775

phone: 39-0971-205843
mobile (optional):

Language: ITALIAN

ECTS: (lessons+tutorial/practice): 6
n. of hours: (lessons+tutorial/practice) 60
Campus: POTENZA
Dept./School: SCUOLA DI INGEGNERIA
Program: ENVIRONMENTAL AND CIVIL ENGINEERING; MECHANICAL ENGINEERING
Semester: I

EDUCATIONAL GOALS AND EXPECTED LEARNING OUTCOMES

The course will concern:
- differential and integral calculus for functions of several real variables;
- theory of differential forms;
- elements of local differential geometry of curves and surfaces;
- elements of potential theory,
as well as developing and achieving abilities in differential and integral calculus in several real variables allowing understanding of specific applications of mathematical analysis to physics and engineering.

Particular attention will devoted to the foundations and the main theorems of the above arguments.

Knowledge: Developing a good knowledge of the mathematical language together with abilities in differentiable and integral calculus in several real variables. The aim is to provide a tool for fruitfully following successive lessons in Mathematical Physics, Physics and Engineering.

Skills: Analyzing a mathematical analysis problem in several real variables and finding the solution by evaluating the suitable solving method and by using the theoretical notions learned through the course.

Learning ability: Attending the lessons will give a better comprehension of the arguments and will make easier the individual preparation for the final examination. The student should gradually become independent from the teacher and try to learn more by reading other textbooks, such as those appearing in the proposed list.

PRE-REQUIREMENTS

Pre-requisites consist of the contents of the courses of **Geometry and Mathematical Analysis I**
SYLLABUS

3- [5 hours] Local differential geometry of plane and space curves. Curvature, torsion, Frenet’s formulae. Integrals along regular curves.

6- [5 hours] Local differential geometry of surfaces in space. Regular surfaces, first and second fundamental form. Curves on surfaces. Surface integrals.

TEACHING METHODS
Theoretical lessons, Classroom tutorials for a total of 60 hours.

EVALUATION METHODS
Written examination followed by oral examination [limited to the case of a score slightly smaller than necessary for reaching sufficiency].

The arguments of the written examination (as well as the arguments of the oral examination) include all the contents of the course and they are chosen so that to ensure both the study and understanding of the material of the course and the ability of using the knowledge and methods acquired for learning the contents of the successively taught mathematics, physics and engineering disciplines.

TEXTBOOKS AND ON-LINE EDUCATIONAL MATERIAL
Textbooks:

INTERACTION WITH STUDENTS
The professor sends to the students by e-mail the lecture notes, shortly after teaching each lesson.

Office hours:
Tuesday 15:00 - 17:00 and Thursday 15:00 - 17:00, Dipartimento di Matematica, Informatica ed Economia.

EXAMINATION SESSIONS (FORECAST)
Thursday February 2, 2020; Tuesday April 21, 2020; Thursday June 25, 2020; Thursday October 10, 2020; Tuesday November 24, 2020.

SEMINARS BY EXTERNAL EXPERTS YES ☐ NO X

FURTHER INFORMATION